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The objective of control theory is to calculate a proper action from
the controller that will result in stability for the system
The software implementation of a control law can be inspected by
analysis tools
However these tools are often challenged by issues for which
solutions are already available from control theory.
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Program verification uses proof assistants to ensure the validity of
user-provided code annotations.
These annotations may express the domain-specific properties of
the code.
However, formulating annotations correctly is nontrivial in practice.
By correctly, we mean that the annotations formulate stability
properties of an intended mathematical interpretation from control
theory.
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In order to solve these two challenges this work proposes
1 Axiomatization of Lyapunov-based stability as C code annotations,
2 Implementation of linear algebra and control theory results in PVS.
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Stability and Correctness

The basic module for the description of a controller can be
presented as

ξ(k + 1) = f(ξ(k), ν(k)), ξ(0) = ξ0

ζ(k) = g(ξ(k), ν(k))

where ξ ∈ Rn is the state of the controller, ν is the input of the
controller and ζ is the output of the controller.
This system is bounded-input, bounded state stable if for every ε
there exists a δ such that ||ν(k)|| ≤ ε implies ||ξ(k)|| ≤ δ, for every
positive integer k.
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If there exists a positive definite function V such that V (ξ(k)) ≤ 1
implies V (ξ(k + 1)) ≤ 1 then this function can be used to establish
the stability of the system.
This Lyapunov function, V , defines the ellipsoid {ξ| V (ξ) ≤ 1}, this
ellipsoid plays an important role for the stability preservation at the
code level.
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Control software and Hoare triples

Annotated with assertions in the Hoare style we get

{pre1}
u = Ccxc +Dcyc

{post1}

{pre2}
xc = Acxc +Bcyc

{post2}.
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An ellipsoid-aware Hoare logic

To use ellipsoids to formally specify bounded input, bounded state
stability in.
Typically, an instruction S would be annotated in the following way:

{x ∈ EP } y = Ax+ b {y − b ∈ EQ} (1)

where the pre- and post- conditions are predicates expressing that
the variables belong to some ellipsoid, with
Ep = {x : Rn|xTP−1x ≤ 1} and Q = APAT .
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An ellipsoid-aware Hoare logic

The mathematical theorem that guarantees the relations is :

Theorem
If M , Q are invertible matrices, and
(x− c)TQ−1(x− c) ≤ 1 and
y = Mx+ b
then
(y − b−Mc)T (MQMT )−1(y − b−Mc) ≤ 1

We will refer to it as the ellipsoid affine combination theorem.
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Verification conditions

Figure 1: Verification
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Now that we know the annotations that we want to generate on
the code, we have to find a concrete way to express them on
actual C code.
The ANSI/ISO C Specification Language (ACSL) allows its user to
specify the properties of a C program within comments,
This language was proposed as part of the Frama-C platform,
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Verification conditions

Figure 2: Verification
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We outline the axiomatization in ACSL to fit our needs, which
consist of expressing ellipsoid-based Hoare triples over C code.
We first present the axiomatization of linear algebra elements in
ACSL.
Then we present the Hoare triple annotations in ACSL and the
POs generated by them.
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The following abstract types are declared:
//@ type matrix; type vector

ACSL

With these abstract types, basic matrix operations and properties
are introduced
@ logic real mat select(matrix A, integer i, integer j);

@ logic integer mat row(matrix A);

@ logic integer mat col(matrix A);

ACSL
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The multiplication of a matrix with a vector is defined with function
vect mult(matrix A, vector x), which returns a vector.
Addition and multiplication of 2 matrices, multiplication by a scalar,
and inverse of a matrix are declared as matrix types
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inverse of a matrix A, mat inverse(A) is defined using the predicate
is invertible(A) as follows:

/*@ axiom mat inv select i eq j:
@ ∀matrixA, integer i, j;

@ is invertible(A) && i == j ==>

@ mat select(mat mult(A,mat inverse(A)), i, j) = 1
@

@ axiom mat inv select i dff j:
@ ∀matrixA, integer i, j;

@ is invertible(A) && i! = j ==>

@ mat select(mat mult(A,mat inverse(A)), i, j) = 0
@*/

ACSL

Heber Herencia-Zapana,, Romain Jobredeaux,, Sam Owre,, Pierre-Loı̈c Garoche,, Eric Feron,, Gilberto Perez,, Pablo AscarizNational Institute of Aerospace 17 / 35



Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mapping ACSL predicates to PVS linear algebra concepts Conclusions Acknowledgments

Complex constructions or relations can be defined as uninterpreted
predicates. The following predicate is meant to express that vector x
belongs to EP :

//@ predicate in ellipsoid(matrix P, vector x);
ACSL

mat of array or vect of array, is used to associate an ACSL matrix
type to a C array.
//@ logic matrix mat of array{L}(float *A, integer row,

integer col);

ACSL
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// @ axiom mat of array select:

@ forall float *A; forall integer i, j, k, l;

@ mat select(mat of array(A, k, l), i, j) == A[l*i+j];

ACSL

Heber Herencia-Zapana,, Romain Jobredeaux,, Sam Owre,, Pierre-Loı̈c Garoche,, Eric Feron,, Gilberto Perez,, Pablo AscarizNational Institute of Aerospace 19 / 35



Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mapping ACSL predicates to PVS linear algebra concepts Conclusions Acknowledgments

The paramount notion in ACSL is the function contract.
The key word requires is used to introduce the pre-conditions of
the triple, and the key word ensures is used to introduce its
post-conditions.
//@ require P
//@ ensures R
Q
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We need to deal with memory issues. In general, we want all
functions to be called with valid pointers as arguments, i.e., valid
array and therefore valid matrices.
This is what the built-in ACSL predicate valid does. The followings
snippet shows how the contract can be written using mat select
and mat of array,

/*@ requires (valid(a + (0..3)));
@ ensures ∀integer i, j; 0 ≤ i < 2 && 0 ≤ j < 2
@ ==> mat select(mat of array(a, 2, 2), i, j) == 0;
@ */

void zeros 2x2(float* a)

{ a[0]=0; a[1]=0; a[2]=0; a[3]=0; }

ACSL
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@ Ac = mat of 2x2 scalar(0.449,-0.05,0.01,1.);

@ P = mat of 2x2 scalar(1.5325,10.0383,10.0383,507.2450);

@ Q = mat mult(mat inv(transpose(Ac)),mat mult(P,mat inv(Ac)));

*/

@ requires (valid(xc + (0..1)));

@ requires (valid(yc + (0..1)));

@ requires in ellipsoid(P,vect of array(xc,2));

@ ensures in ellipsoid(Q,vect of array(yc,2));*/

void inst2(float* xc, float* yc)

{ yc[0]= 0.449*xc[0] + -0.05*xc[1];

yc[1]= .01*xc[0] + 1.*xc[1]; }

ACSL
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Errors due to floating point approximations are thus not taken into
account.
The Frama-C toolset offers the possibility of making this
assumption by including ’JessieFloatModel(Math)’.
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Frama-C tools do not require an annotation at each line as
proposed by Hoare.
They rather rely weakest precondition calculus.
The proof obligation (PO) is then P =⇒ wp(S,Q) where P is the
pre-condition.
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On the one hand, using ACSL and the Frama-C framework, we
were able to generate POs about the ellipsoid predicate.
Frama-C tools even make it possible to express the PO in PVS,
along with a complete axiomatisation in PVS of C programs
semantics.
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in ellipsoid?(P 0, vect of array(xc, 2, floatP floatM))))))

IMPLIES

in ellipsoid?(Q, vect of array(yc, 2, floatP floatM0))

PVS

vect of array(yc, 2, floatP floatM0)’vect =

Ac * vect of array(xc, 2, floatP floatM)’vect

PVS

For both POs,
we must first interpret the uninterpreted types and to prove the
properties that are defined axiomatically.
We must then discharge the verification conditions. This is done
by using PVS and a linear algebra extension of it.
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Mapping:TYPE= [# dom: posnat, codom: posnat, mp:

[Vector[dom]->Vector[codom]] #]

PVS

L(n,m)(f) = (# rows:=m, cols:=n, matrix:=λ(j,i):
f‘mp(e(n)(i))(j) #)

T(n,m)(A) = (# dom:=n, codom:=m, mp:=λ(x,j): ΣA‘cols−1
i=0 (λ(i):

A‘matrix(j,i)*x(i) #))

PVS

Matrix inv(n):TYPE = {A: Square | squareMat?(n)(A) and

bijective?(n)(T(n,n)(A))}

PVS

inv(n)(A) = L(n,n)(inverse(n)(T(n,n)(A)))
PVS
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ellipsoid affine comb: LEMMA ∀ (n:posnat, Q, M: SquareMat(n), x,

y, b, c: Vector[n]):

bijective?(n)(T(n,n)(Q)) AND bijective?(n)(T(n,n)(M))

AND (x-c)*(inv(n)(Q)*(x-c))≤ 1

AND y=M*x + b

IMPLIES

(y-b-M*c)*(inv(n)(M*(Q*transpose(M)))*(y-b-M*c))≤ 1

PVS
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We have developed a PVS library that is able to reason about
these properties.
We now must link these two worlds: ACSL ellipsoids predicate
proof obligation in PVS must be connected with with our linear
algebra PVS library.
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Verification conditions and theory interpretation

Theory interpretation is a logical technique for relating one
axiomatic theory to another.
Interpretations can be used to show:
An axiomatically defined specification is consistent
or that a axiomatically defined specification captures its intended
models.
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IMPORTING acsl theory{{ matrix := Matrix,

vector := Vector no param,

vect length := LAMBDA (v:Vector no param): v’length,

mat row := LAMBDA (M:Matrix): M’rows,

mat col := LAMBDA (M:Matrix): M’cols,

mat mult := *,

in ellipsoid := in ellipsoid?

mat inv := LAMBDA (M:Matrix): IF square?(M) THEN IF

bijective?(M’rows)(T(M’rows,M’rows)(M))

THEN inv(M’rows)(M)

ELSE M

ENDIF

ELSE M ENDIF }}

PVS
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in ellipsoid?(P 0, vect of array(xc, 2, floatP floatM))))))

IMPLIES

in ellipsoid?(Q, vect of array(yc, 2, floatP floatM0))

PVS

bijections :LEMMA

bijective?(2)(T(2,2)(P 0)) AND bijective?(2)(T(2,2)(Ac))

PVS

where Ac = mat of 2x2 scalar(0.449,−0.05, 0.01, 1.) and
P = mat of 2x2 scalar(1.5325, 10.0383, 10.0383, 507.2450)
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Conclusions

We have described a global approach to validate stability
properties of C code implementing controllers.
Our approach requires the code to be annoted by Hoare triples,
proving the stability of the control code using ellipsoid affine
combinations.
We have defined an ACSL extension to describe predicates over
the code, as well as a PVS library able to manipulate these
predicates.
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Theory interpretation maps proof obligations generated from the
code to their equivalent in this PVS library.
This mapping allows to discharge POs using the ellipsoid affine
combination theorem implemented in PVS.
Linear algebra PVS libraries can be used for the formal
specification of control theory properties
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